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What are Artificial Intelligence (AI) and 
Machine Learning (ML)

• A class of data analytics algorithms in which the rules and/or models 
are not known a priori and are learned as part of the process  

– Process data to identify correlations

– Complexity of the model is a potential problem

• Computers trained to perform tasks that if performed by a human 
would be said to require intelligence

– Knowledge-based tasks

– Computers are good at working with data, not “meaning”
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Hope/Hype/Hard Truth

• Hope

– The convergence of big data, HPC, and AI will enable the accumulation 
and automation of functional knowledge across many application spaces.

• Hype

– AI solutions are superior to collective intelligence of the experts for multi-
modal data challenges

– Effective translation of AI tools is straightforward 

• Hard truths

– AI solutions, thus far, are effective at executing narrowly defined tasks, 
identifying correlations in complex data 

– Need for sustainable heterogeneous data and compute infrastructure to 
advance AI innovation

– Access to and availability of ”good” and “labelled” data is one of the 
biggest challenges for AI

– Vulnerability threats for AI (hacking, intentional manipulation) are a huge 
concern for deployment
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Taxonomy of AI Uses

• Classification and 
regression

• Surrogates

• Control

• Inverse problems, design and 
optimization
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Use Case: Smart Grid

Application 
challenges

• Integrating variable distributed energy 
resources (DERs) with intelligent interfaces

• Integrating storage at multiple layers

• Integrating electric vehicles (EV)

• Managing demand – Residential, 
Commercial, Industrial

− Enabling energy coordination and trading 
between buildings and trading between 
buildings and grid

Technology
challenges

• Connectivity across DERs

• Scalable control and diagnostics algorithms 
that are driven by data

• Actionable, real-time situational awareness

• Data and physical system security, including 
privacy
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Smart Grid: Leveraging A Data-rich Environment

• Learning algorithms for wide-area, hierarchical information sources

– Distribution: Intelligent loads, SCADA devices, DERs

– Transmission: Protection systems, power flow control

– Generation: Planning and coordination 

– Control: Situational awareness, fine-grained control of DERs, enhanced 
reliability and resilience
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Use Case: Additive Manufacturing

• Impact of machine learning

– Surrogate models

– Steering high-fidelity simulation

– Design, particularly materials and processes

– Real time diagnostics and control during manufacturing

• Defect detection and 
mitigation

• Control of local structures

– Predicted performance 
based on manufacturing 
data

– Test design and control

Design
• Shape
• Topology
• Material
• Process

Manufacturing
• RT controls

• Environment

• Process

• Diagnostics

Testing
• Validated Process

• Test design

Specifications
• Functional
• Environmental
• Margins
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Ensemble methods

• Statistical methods to improve the performance of machine learning 
algorithms

– E.g., decision trees, k-NN

– Most common application is perhaps the random forest

– Not effective for stable learners

– Most effective for weak learners

• Bootstrap aggregation (bagging)

– Random selection of training data to improve stability and reduce variance

• Boosting

– Ensembles of weak learners to create a stronger learner

– Can be sequential or parallel

• Stacking

– A trained meta-learner



9 ARPA-E Machine Learning Workshop

Random Forest/Decision Trees 
Feature Selection and Dimension Reduction

• Problem: Do an approximate combinatorial search to 
establish a feature-to-function relationship

– A full search requires 2n computations

• Idea: Mine decision trees for patterns

• Decision trees -

– More naturally explainable

– Weak learners

– Prone to overfitting
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Random Forest/Decision Trees

• Step 1 – determine branching criterion

• Step 2 – limit depth to prevent over-fitting

• Step 3 – apply bootstrap aggregation (bagging)

– Select  𝛼 “large” and 𝑛′ = 𝛼𝑛

• Step 4 – apply feature bagging

– Select 𝑝′ = 𝑝

• Step 5 – boost (combine trees)

Decision tree

Random Forest
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X11< 0.7X3> 0.1X3< 0.1

X9< 0.5

X9> 0.5

X10< 0.5X2> 0.9

X11> 0.5
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X2< 0.9
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Random Forest/Decision Trees

• Step 6 – Identify branching patterns and select feature sets

• Step 7 – create new RF branching on selected sets
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Neural Networks

• A NN is simply a function approximation, and a NN 
with a single hidden layer can approximate any 
function  

• Great for models when a specific model form is not 
known, but not much capability beyond basic 
statistical methods.

• NNs languished for decades
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Neural Networks – Significant Advances
Deep Neural Networks

• Deep neural networks (DNNs) were introduced

– Width increases the ability to approximate a function

– Depth increases the abstractions, 
reduces the number of parameters but 
increases the computational requirements for training

– Still susceptible to overfitting

– Still an art



14 ARPA-E Machine Learning Workshop

Neural Networks – Accelerated Training

• Key idea for many improvements

If  𝑁1 ⊆ 𝑁2,  then  𝐿 𝑁1 ≥ 𝐿 𝑁2

• Leads to

– Residual networks

– Inception networks

– Feature reuse

– Convolutional networks

• Training DNNs became algorithmically tractable 

– Stochastic gradient descent

𝑁1 𝑁3 ⊕

𝑁2
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Neural Networks – HPC

• We have the ability to collect and store large amounts 
of data

• Computational power continued to increase, with 
architectural improvements that are amenable to 
neural networks

– For example, GPU became practical for 
accelerated computations.

– Reduced-precision tensor core 
units are included

CORAL System
Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010 2012 2017 2021

Exascale OLCF5: 5-10x 
Summit
~20 MW

Summit: 10x Titan
Hybrid GPU/CPU
13 MW
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Issue: “Syntactic” Space vs. “Semantic” Space

• Humans tend to think in semantic space, i.e., in terms of the 
meaning.

And metrics in semantic space are fundamentally different from 
those in syntactic space

• Implications 

– Easy to spoof classification systems

– Transfer learning doesn’t map well.  

(Humans tend to transfer learning in semantic space, e.g., transfer what I 
learned about human behavior in kindergarten to how I drive.  Most AI 
approaches transfer in syntactic space or transfer parts of the model (a sort of 
“gene transfer”).
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Issue: Verification, Validation, Explainability and 
Interpretability

• Verification

– Is the model implemented correctly?

• Validation

– Is the model (including training data) appropriate for the decisions being made?

– Must be evidence based

– Requires some form of UQ, robustness guarantees and bounds on “distortion”

Analysis CodeModel

Traditional physics-based HPC
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Issue: Verification, Validation, Explainability and 
Interpretability

• Verification

– Is the model implemented correctly?

• Validation

– Is the model (including training data) appropriate for the decisions being made?

– Must be evidence based

– Requires some form of UQ, robustness guarantees and bounds on “distortion”
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Issue: Verification, Validation, Explainability and 
Interpretability

• Interpretibility

– Can a human understand the model?  For example, do 
the basis vectors in a dimension reduction algorithm 
have a physical meaning?

• Explainability

– Can the model present a sequence of steps 
that can justify the answer to an expert?

– Expert based

• Reproducibility

– Does the same experiment lead to the same 
conclusion?

– Can we run different experiment and not contradict our 
conclusion?

– If we create a new model with the same data, do we 
get the same conclusions?

– Required for good science

•

Evidence based
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Issue: Data Is A Major Problem

• Need more data than was imagined just a few 
years ago

– We are looking for complex correlations

– Using primarily statistical methods

• Labelled data is a problem

– Generating labels is expensive and labor intensive 
(e.g., Mechanical Turk)

– Need to move toward reinforcement learning

• Synthetic data and simulated environments are 
partial solutions

– But an AI can learn the flaws in these systems
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Issue: AI Is An Art

• Choosing the model form and hyper parameters is often ad-hoc 
and requires experience and insight 

• AI models must be tuned 

• Neural networks design is difficult and often requires tuning

• Interpreting the results requires expertise

“Machine learning methods are often 
described in papers at an abstract level, 
for maximum generality.  However, a 
good choice of hyperparameters is 
usually necessary to make them work 
well on real-world problems, and tricks 
are often used to make most efficient 
use of these methods and extend their 
capabilities.” 

G. Montrevan, et.al., “Methods for Interpreting and 
Understanding Deep Neural Networks.”
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Six Research Areas To Be Addressed 

• Data quality and statistics
– Even if we have enough data, it is not necessarily good data
– Dealing with bias

• Machine learning
– Needs to accelerate
– Very model dependent

• Merging physics and AI
– We can’t violate the laws of physics

• Verification, validation and explainability
– Is the answer right, is the model 

appropriate, and can we understand it
– What is the human-computer interface

• Computing
– How do we use “big” computers
– How do we use accelerated nodes

• Deployment
– Computing at the edge
– privacy, ethics and regulations


